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Abstract

This paper suggests the implementation of indirect boundary element method (IBEM) to simulate three-

dimensional underwater explosion bubbles. The source is assumed distributed continuously on the boundary surface.

An expression for the self-induced velocity of a point on the boundary surface is obtained via mathematical analysis,

and with it a new definition of the normal vector valid even for a non-smooth surface is given. Elastic mesh technique

(EMT), which is a new mesh regulation technique, is further applied to maintain the regularity of the triangular-element

mesh used to discretize the dynamic boundary surfaces during the evolution of explosion bubble(s). The Bi-CG iterative

solver is employed to solve the resulting linear system. All these efforts make the present approach viable and robust,

and which is validated by computations of several bubble dynamics problems.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Boundary element method (BEM) is commonly applied in the simulation of bubble(s) dynamics and can

be partly attributed to the inherent property of reducing the dimension of the problem by one, which greatly

conserves computational effort. This can become a critical issue in the simulation of three-dimensional

multiple bubbles in the presence of more complex geometrical solid boundaries and/or free surface. The
employment of BEM to bubble dynamics can be seen in the early work of Blake and Gibson [3] who studied
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the growth and collapse of a vapor cavitation near a free surface. Their numerical results of the bubble shape

as it evolved matched well with the experiment, which suggests that BEM can be a good approach to capture

the complex features of bubble dynamics including the formation of water jet. In their later work of Blake and
Gibson [4], the same methodology is used to investigate the evolution of a cavity bubble near a solid wall.

They also introduced a new criterion to decide the proper time step size for evolution of the bubble dynamics,

which is widely used now. Other works employing BEM to study bubble dynamics include Oguz and

Prosperetti [11] investigation of the entrained bubbles produced by the impact of drops on surface of the same

liquid, and Lundgren and Mansour [10] study of an initially spherical bubble rising in a gravity field. The

simulation started from a spherical bubble till its jet is closed to making an impact on the upper surface. Then

a toroidal bubble, whose size and rotation is estimated based on the earlier computed results, was simulated

and followed on. In still other works, Harris [9] simulated the three-dimensional motion of a bubble close to a
fixed rigid spherical ball and cylinder. Harris used 4-node elements with linear base function to construct the

bubble and structure surface. In further development of a more accurate calculation pertaining to the for-

mation of the toroidal cavity bubble near a rigid boundary, Best [1] introduced a branch cut and formulated a

boundary integral equation valid for both on the bubble surface and the branch cut. This approach was

adopted and led to Zhang et al. [17] simulation of an initially spherical cavity bubble which is located near a

rigid wall till its full toroidal phase. In these said works, a contact interface was defined to separate the water

jet and the surrounding domain during the toroidal bubble phase. Following, Zhang and Duncan [16] ex-

tended the study to adiabatic gas bubble and which overcome the issue related to the presence of extremely
high pressure during bubble collapse as encountered for their previous cavity bubble model. In more recent

years, Wang et al. [14] continued to employ BEM to study the non-linear interaction between a gas bubble

and free surface. They first employed a surgical-cut to convert the bubble to a toroidal shape and then used a

vortex ring inside bubble to model the rotational part of the flow. Tong [12] also numerically investigated the

three-dimensional interaction of transient cavities in fluid flows with rigid boundaries, which include

spherical and oval balls. Zhang et al. [18] carried out computations involving several different configurations

of two three-dimensional bubbles in the presence of a nearby free surface. A follow-on work by Zhang et al.

[20] then extended the surgical-cut to three-dimensional toroidal bubble problems. In essence, BEM has been
extensively used for the study of the bubble dynamics problems.

Thus far, it is fair to say that most simulations of three-dimensional bubble dynamics are primarily based

on the so-called direct boundary element method (DBEM) in which the potential or its normal derivative is

the primary unknown to be solved first. The material velocity of the bubble surface is then calculated by

combining the normal velocity component which is obtained based on the definition of the normal direction

on the described surface by some global or local surface interpolation schemes, and the tangential velocity

components which are determined by evaluating the tangential derivatives of the potential along the bubble

surface. Harris [9] suggested an averaging of linear approximations on the surface element. However as
noted by Blake et al. [2], this algorithm suffers from non-convergence under mesh refinement. Chahine et al.

[8], on the other hand, used quadratic polynomials to fit the surface locally. However, as also noted by

Blake et al. [2], the method fails for certain arrangements of the nodes and is thus not considered very

robust. Blake et al. [2] proposed the use of radial basis functions since it was purported to be universally

applicable. However, since the interpolation scheme via radial basis functions is based on a bivariated

representation z ¼ f ðx; yÞ of the surface, a new orientation of Cartesian axes must be chosen once a part of

the bubble surface becomes parallel (or almost parallel) to the z-axis. Finally, Zhang et al. [18] introduced a

trivariated interpolation scheme based on the 9-node Lagrangian element, but in their recent followed-on
work [19] they agreed that this approach might be cumbersome if mesh refinement is carried out as the

bubble evolves or when the bubble undergoes topological changes from a singly connected region to a

doubly connected region.

Indirect boundary element method (IBEM) takes the source or dipole distributions as the primary

unknown and which are solved first. The potential and material velocity in the flow field can then
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be evaluated by integration over the singularity distributed region. Interpolation and calculation of the

derivatives of potential along bubble surface are unnecessary in the indirect approach, which implies that

the indirect methods can be potentially more accurate and suitable for numerical implementation. Most
applications of the indirect methods, however, are for the axisymmetric and two-dimensional bubbles.

Blake and Gibson [3] used a discrete ring source distribution to (approximately) represent the cavitation

bubble and the adjacent free surface. Boulton-Stone [6] tried both source and dipole distribution methods.

One major difficulty of IBEM lies in calculating the material velocity which can give rise to some hyper-

singular integrals leading to uncertainty in interpretation in the sense of the Cauchy principal value.

Boulton-Stone [6] overcame this problem by proposing the use of quadratic fitting of the bubble boundary.

This, however, seemingly only removes the difficulty but results in a much smaller velocity once the sin-

gularity is smoothed out. In fact, it is reckoned that this was responsible for the abnormally early break-
down of the said method. Further more, the proposed solution by Boulton-Stone where surface fitting is

required becomes less attractive compared to the direct formulation. Finally, Zhang et al. [19] proposed a

desingularized indirect BEM method. In this case, the singularity was distributed not on the bubble surface,

but a certain distance inside the bubble. However, this method has the limitation that towards the final

phase of the jet impact on the opposite bubble surface, the computation becomes extremely slow. In ad-

dition, one can easily foresee problems relating to the placement of the distributed singularity when the

bubble surfaces come increasingly close to each other and eventually meet and evolve into toroidal form.

The present paper proposes an IBEM in which the source is continuously distributed along the bubble
surface. This approach can theoretically prevent the appearance of any singularity in potential and velocity

evaluation, as long as all boundaries are smooth. The formulation for the self-induced velocity of a point on

the bubble surface is derived. Based on that, the normal vector with respect to the bubble surface is defined

and which is valid even for a non-smooth surface. In the implementation, triangular-element discrete

surface is constructed to represent the dynamic bubble boundary, and a linearly distributed source is in turn

defined for each triangular element on the bubble surface. All quadratures involved in the evaluation of

influence matrix and the calculation of potential/velocity unknowns are carried out by accurate formulae.

When this method is used initially to simulate a bubble with jet formation, most of the surface elements are
found to gather at the location of jet tip and its vicinity leading to problem associated with overcrowding

and presence of many small elements. This problem can be alleviated with the application of elastic mesh

technique (EMT) introduced recently [13]. EMT is employed judiciously to better distribute the elements on

the bubble surface(s) and yet is able to capture the ensuing jet formation; its application has obviated the

need or delay the employment of mesh refinement/deletion. Finally, the Bi-CG solver which is more efficient

than the traditional Gauss elimination matrix solver is adopted to solve the resulting linear system.
2. Mathematical formulae

2.1. Potential theory

Source (and sink) is commonly applied to solve potential flows of zero lift problems. The potential and

velocity at point P induced by a point source located at point Q with unit strength can be formulated as

follows:

/� ¼ � 1

r
; ð1aÞ
m
* � ¼ r

*

r3
; ð1bÞ
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where r
*
is the vector from point Q to P . Eqs. (1a) and (1b) are very simple, but it is not suitable to use point

source directly in numerical calculation since singularity occurs when P approaches Q. One cannot,

therefore, obtain the values of potential and velocity at the source point Q. A continuous distribution of the

source on the boundary surface is a way to weaken the singularity significantly. As long as both the

boundary surface and the source distribution are smooth, the induced potential and velocity will have

limited values on boundary as well as in the domain.

The flow domain is denoted by X, which is bounded by surface S. On the surface the source density r is

continuously distributed. The vectors from the origin O to point P and Q are given by rP
*

and rQ
*
,

respectively. r
*
is the vector from Q to P , i.e.

r
* ¼ rP

* � rQ
*
: ð2Þ

If point P is located inside the domain X (not on the surface S), then the total potential and velocity at

point P induced by all the sources distributed continuously on surface S can be evaluated by integration

over S (see Fig. 1), i.e.

/ðP Þ ¼ �
Z Z

S

rðQÞ
rðP ;QÞ dsðQÞ; ð3aÞ
m
*ðP Þ ¼

Z Z
S

rðQÞ r*ðP ;QÞ
r3ðP ;QÞ dsðQÞ: ð3bÞ

If point P is located on the surface S (see Fig. 2), Eqs. (3a), (3b) cannot be applied directly since the

associated integral kernels are singular. Limiting analysis must be used for the evaluation. Consider a

sphere of radius e > 0, with its center coinciding with the point P on surface S. When e is sufficiently small,
the surface of the sphere is cut into two portions, with the portion lying outside of the flow domain X
denoted by Se. The original surface S is also divided into two parts, of which the part lying inside the sphere

is denoted by Sc. Se and Sc share the same boundary curve. On surface S (including Sc) the unit normal n
*
is

defined pointing to the outside of X. On Se the unit normal n
*
is defined pointing to the outside of the sphere

(see Fig. 2). With a new surface taken to be S0 ¼ S � Sc þ Se of which the point P is excluded, we evaluate

the values of potential and velocity at point P using Eqs. (3a) and (3b):

/ðP Þ ¼ �
Z Z
S�Sc

rðQÞ
rðP ;QÞ dsðQÞ �

Z Z
Se

rðQÞ
e

dsðQÞ; ð4aÞ
Fig. 1. Geometry configuration.
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m
*ðP Þ ¼

Z Z
S�Sc

rðQÞ r*ðP ;QÞ
r3ðP ;QÞ dsðQÞ þ

Z Z
Se

rðQÞ r*ðP ;QÞ
e3

dsðQÞ; ð4bÞ

when e ! 0, Se and Sc ! 0, S0 ¼ S � Sc þ Se ! S. Therefore, the potential and velocity at point P which is

located on surface S can be evaluated by limiting e ! 0 in Eqs. (4a) and (4b). The solid angle subtended at

point P by surface S is given as

H ¼ lim
e!0

1

e2

Z Z
S�

ds: ð5aÞ

Here H is a real number varying between 0 and 4p. The gravity center of the surface Se can be evaluated as

rc
* ¼

R R
Se

rQ
*
dsðQÞR R

Se

dsðQÞ : ð5bÞ

As such, when e ! 0, rc
* ! rP

*
. Also noting that on Se, as e ! 0, Q ! P and rðP Þ ! rðQÞ, we have

lim
e!0

Z Z
Se

rðQÞ
e

dsðQÞ ¼ rðP Þlim
e!0

1

e

Z Z
S�

dsðQÞ ¼ HrðP Þlim
e!0

e ¼ 0;
lim
e!0

Z Z
Se

rðQÞ r*ðP ;QÞ
e3

dsðQÞ ¼ rðP Þlim
e!0

1

e3

Z Z
S�

ðrP
* � rQ

* ÞdsðQÞ ¼ HrðP Þlim
e!0

rP
* � rc

*

e
:

If we define

nP
* ¼ H lim

e!0

rc
* � rP

*

e
; ð6Þ

then the formulae for evaluating the potential and velocity values at point P which is located on surface S
are obtained as
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/ðP Þ ¼ �
S

rðQÞ
rðP ;QÞ dsðQÞ; ð7aÞ
m
*ðP Þ ¼ �rðP ÞnP

* þ
S

rðQÞ r*ðP ;QÞ
r3ðP ;QÞ dsðQÞ; ð7bÞ

where
S
ds implies the Cauchy principal value of the surface integration.

The definition of nP
*

in Eq. (6) indicates that the direction of nP
*

is from point P to the gravity center of the

surface area Se, which is a more general definition of normal vector valid even on non-smooth surfaces. On

smooth surfaces, nP
*

is perpendicular to the surface everywhere, i.e. its direction is identical to the con-

ventional normal vectors.
If nP

*
is calculated according to Eq. (6), the solid angle H and gravity center rc

*
must be evaluated. A

simpler formula for nP
*

may be obtained if the following relation which is based on the fact that Sc and Se
share the same boundary curve is used:Z Z

Sc

n
*
ds ¼

Z Z
Se

n
*
ds: ð8Þ

Since

lim
e!0

Z Z
Se

rðQÞ r*ðP ;QÞ
e3

dsðQÞ ¼ �rðPÞlim
e!0

1

e2

Z Z
Se

n
*ðQÞdsðQÞ ¼ �rðP Þlim

e!0

1

e2

Z Z
Sc

n
*
ds;

another definition for nP
*

is given as

nP
* ¼ lim

e!0

1

e2

Z Z
Sc

n
*
ds: ð9aÞ

In the above formulation, nP
*

can be obtained by integrating the unit normal distribution along the sur-

rounding area of point P , i.e. Sc. One may take note that nP
*

is not a unit normal vector. From Eq. (9a), its

value can be determined to vary from 0 to p. For example, jnP
* j ¼ 0 when the solid angle subtended at P by

the surface S is either 0 or 4p (this is the extreme case for the problem); jnP
* j ¼ p when surface S is locally

smooth at point P . In the utilization of Eq. (9a), there is no necessity to consider solid angles and gravity

centers. Further simplification for Eq. (9a) is still possible if Sc is constructed by N plane elements (see

Fig. 3). It follows that Eq. (9a) can be simplified and written as
Fig. 3. Plane element discrete surface.
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nP
* ¼ 1

2

XN
i¼1

aini
*
: ð9bÞ

Here ai is the angle subtended at point P in element i, and ni
*

is the unit normal vector on element
i ði ¼ 1; 2; . . . ;NÞ. Eq. (9b) is very easy to implement in numerical calculations. It is not the weighted

average approximation of all unit normal vectors of its surrounding elements, but the exact direction of the

self-induced velocity at point P if it is a node on a plane element discrete surface. Many other schemes

proposed use of the weighted average to evaluate the normal vector at point P (purportedly) resulting in on

equivalent or similar formulations to Eq. (9b). However, It should be noted that these other formulations

are most likely come from approximation, and not the (natural) result of strict mathematical analysis. On

the other hand, Eq. (9b) is mathematically exact.

2.2. Potential flow model

For large-scaled bubbles (say larger than millimeter) as considered in this paper, the effect of surface

tension is insignificant during most of the bubble�s lifetime and is thus neglected (see also [5]). For a general

potential flow problem, there exists a potential function /ðx; y; z; tÞ in the fluid region bounded by some

bubbles and solid structures. A rectangular coordinate system ðx; y; zÞ is adopted with the z-axis pointing
vertically upwards. Potential function / is a harmonic function over the whole flow domain (see Fig. 4), i.e.

r2/ ¼ 0: ð10Þ

The kinematic and dynamic boundary conditions governing the motion of the bubble surface are

Dx
Dt

¼ r/; ð11aÞ
D/
Dt

¼ 1þ 1

2
r/j j2 � d2z� e

V0
V

� �k

; ð11bÞ
Fig. 4. Coordinate system.
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where x denotes the spatial position of the fluid particle on bubble surface. Eq. (11b) results from the

assumption that the gas inside the bubble is ideal and its motion is neglected, i.e. p ¼ pc þ p0ðV0=V Þk, where
Pc is the constant pressure of vapor; V is the volume of the bubble; V0 and p0 are the initial volume and

pressure of the non-condensable gas, respectively; k is the ratio of specific heat of the gas. In the formu-

lations (11a), (11b), the length scale is non-dimensionalized by the maximum Rayleigh bubble radius Rm;

and pressure is non-dimensionalized by pressure difference Dp ¼ p1 � pc, e ¼ p0=Dp and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qgRm=Dp

p
are non-dimensional parameters which characterize the strength (initial pressure) and buoyancy, respec-

tively (see [14], for details).
When jet impact occurs and followed by the formation of toroidal shaped bubble, a vortex ring must be

introduced to describe the rotational part of flow. The total potential / is decomposed into two parts: a

potential associated with the circulation generated by the impact, �w, termed the ring potential, and a re-

mainder, u which is smooth in the entire fluid domain. The ring potential at any point P in the flow field or

the bubble surface can be efficiently obtained by

�wðP Þ ¼ CHðP Þ
4p

; ð12Þ

where H is the solid angle subtended at the point P by the vortex ring; the strength of the vortex ring C
can be determined by the difference of potential values at the impact point. C is kept as a constant

value (i.e. not changing with time) once the impact occurred. The location of vortex ring can stay

invariant as long as it lies within the toroidal bubble, and hence �w will not change with time. (Only

when there is substantial subsequent movement of the toroidal bubble, then the vortex ring is moved to

a new location still within the torus and �w changes accordingly.) It may be noted that based on an

alternative approach by Best [1], the ‘‘physical’’ vortex sheet is located in front of the jet tip and

convected with the fluid flow. The shape of the vortex sheet can subsequently be highly stretched and
complicated. In the ideal fluid model of this work and Best, the vortex sheet only provides a circulation

flow and separates the potential jump across it. If one discounts the exact location of the potential jump

(potential is not a physical parameter anyway), it is possible to replace the more complex so-called

‘‘real’’ vortex sheet with a ‘‘fake’’, but much simpler, representation. The vortex ring introduced in the

present paper is a simplified model of the ‘‘real’’ vortex sheet and it provides the same amount of

circulation flow. The remainder potential u should also satisfy the Laplacian equation (10), but with the

following modified boundary conditions:

Dx
Dt

¼ ruþr �w; ð13aÞ
Du
Dt

¼ �r �w � ðruþr �wÞ þ 1þ 1

2
ru
��� þr �w

���2 � d2z� e
V0
V

� �k

: ð13bÞ

One may refer to [20] for more details.
3. Numerical implementation

To solve Eqs. (7a), (7b) numerically, the surface S is discretized into a set of M nodal points

Pi ði ¼ 1; . . . ;MÞ, and N triangular elements Dj ðj ¼ 1; . . . ;NÞ. The source distribution r on each element is

assumed to vary linearly, and a set of M global base functions are defined as follows:
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wi ¼
1 on node Pi;
0 on other nodes ði ¼ 1; . . . ;MÞ;
linear interpolation on each element:

8<
: ð14Þ

After substitution of the above formulae, Eq. (7a) in its discrete form can be written as

/i ¼ �
XM
k¼1

rk

XN
j¼1

Dj

wkðQÞ
riðQÞ

dsðQÞ
" #

: ð15Þ

Here ri
*ðQÞ is the vector from Q on Dj to Pi ði ¼ 1; . . . ;MÞ. The portions enclosed by the square brackets in

Eq. (15) are only dependent on the geometry of the problem. All integration in Eq. (15) can be carried out

using the analytical formulae listed in Appendix A.

In order to analytically evaluate the induced velocity of any control point by the linear source distri-

bution over any triangular element, one can start and transform Eq. (3b) into a suitable form. Fig. 5
illustrates the local coordinate system used in the analysis. The induced velocity can be derived by applying

the rP operator to the induced potential (Eq. (3a)) directly, i.e.

m
*ðP Þ ¼ �rP

Z Z
S

rðQÞ
rðP ;QÞ dsðQÞ ¼

Z Z
S

rðQÞrQ
1

rðP ;QÞ

� �
dsðQÞ: ð16aÞ

Since rQ ¼ ~rQ þ nQ
* ðo=onQÞ, therefore

m
*ðP Þ ¼

Z Z
S

~rQ
rðQÞ
rðP ;QÞ dsðQÞ �

Z Z
S

~rQrðQÞ
rðP ;QÞ dsðQÞ þ

Z Z
S

rðQÞ o

onQ

1

rðP ;QÞ

� �
nQ
*
dsðQÞ

¼
I
Ce

rðQÞ
rðP ;QÞ ns

*ðQÞdCðQÞ �
Z Z

S

rQrðQÞ
rðP ;QÞ dsðQÞ þ

Z Z
S

rðQÞ o

onQ

1

rðP ;QÞ

� �
nQ
*
dsðQÞ: ð16bÞ

Here the operators rP and rQ are only applied to the control point P and source point Q, respectively; ~r is

the projection of operator r on the triangular element which is bounded by the edges Ce; ns
*

is the unit

vector perpendicular to the respective edge and on the same plane as the triangular element. If the control

point P is located on the triangular element, then the first term in Eq. (7b) must be added to Eq. (16) to

become
ns

s

ns

b 

a 

A 
h 

b 

a 

ez=ex×ey 

ex 

Fig. 5. Analytical integral of the potential and velocity induced by a linear source distribution over any triangular element.
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m
*ðP Þ ¼ � rðP Þnp

* þ
I
C

rðQÞ
rðP ;QÞ ns

*ðQÞdCðQÞ

þ
Z Z

S

rðQÞ o

onQ

1

rðP ;QÞ

� �
nQ
*
dsðQÞ �

Z Z
S

~rQrðQÞ
rðP ;QÞ dsðQÞ: ð17Þ

After substitution of the discretized source distribution rðQÞ ¼
PM

k¼1 rkwkðQÞ, Eq. (17) is further trans-

formed as follows:

mi
* ¼ �rinPi

* þ
XM
k¼1

rk

XN
j¼1

I
Cj

wkðQÞ
riðQÞ

ns
*ðQÞdCðQÞ

" #
þ
XM
k¼1

rk

XN
j¼1

Z Z
Dj

wkðQÞri
*ðQÞ � nj

*

r3i ðQÞ
nj
*
dsðQÞ

2
64

3
75

�
XM
k¼1

rk

XN
j¼1

Z Z
Dj

~rðQÞwkðQÞ
riðQÞ

dsðQÞ

2
64

3
75: ð18Þ

One may note that, all integrations in Eq. (18) can be evaluated exactly by the analytical formulae which are

listed in Appendix A. By defining

Aik ¼ �
XN
j¼1

Dj

wkðQÞ
riðQÞ

dsðQÞ; ð19aÞ
Bik ¼
XN
j¼1

Dj

wkðQÞri
*ðQÞ � nj

*

r3i ðQÞ
nj
*

"
�

~rQwkðQÞ
ri

#
dsðQÞ þ

XM
k¼1

wkðQÞ
riðQÞ

ns
*ðQÞdCðQÞ; ð19bÞ

we can obtain two matrix expressions of /i and mi
*
as

/i ¼
XM
k¼1

Aikrk; ð20aÞ
mi
* ¼ �rinPi

* þ
XM
k¼1

Bik
*

rk: ð20bÞ

In this approach, there is no need of interpolation to approximate the velocities and normal vectors on each

node.

At a given time step, if the potential on the boundaries (like on the bubble(s) and free surface) is given,

Eq. (20a) is used to compute for the unknown r. The velocity on surfaces is then obtained from Eq. (20b).

From there, Eqs. (11a) and (11b) are used to update for the next time step, and the sequence of calculation

continues. For problems where there is the presence of rigid surface(s) and the normal velocity is known, a

combination of Eqs. (20a) and (20b) are used to evaluate for r, to be followed by the calculation of the
unknown potential and velocity on the rest of the boundaries. As before, Eqs. (11a) and (11b) are employed

to evolve for the next time step.

In the simulation of bubble dynamics with jet formation, the jet tip exhibits strong sink characteristic.

The elements on the bubble surface tend to converge fairly rapidly towards the jet tip and quickly become

over crowded in the jet tip vicinity. (Strictly, the inherent presence of more elements for better resolution of

the jet is a reasonable and acceptable development. The objection arises when too many elements are in the
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jet tip vicinity which has the consequence of thinning out the element distribution in other regions.) This

accumulated imbalance of element distribution will eventually result in the early breakdown of the simu-
lation in the absence of other interventions. In order to make the element distribution as reasonably

uniform as possible, EMT is introduced. EMT is based on the idea that if the mesh is made of elastic

ribbons, it should be able to automatically adjust its shape optimally: all segment lengths are close to equal.

In essence, the optimum mesh is found by minimizing the total elastic energy stored in each segment of the

mesh. This approach has an advantage that it actively seeks in a forward manner the optimum mesh for

computation at each time step. This is quite different from those where the re-distribution takes place after

the calculations are made. Compared with the conventional node insertion and deletion approach, EMT

keeps the number of nodes and topological structure of the mesh unchanged. (This may become a critical
issue in deriving an efficient algorithm for matrix inversion in the simulation of multiple bubbles with

complex geometric and yet the number of elements is kept constant without the additional complexities of

mesh refinement and deletion.) Instead of advancing by the material velocity, EMT produces an optimum

mesh shifting velocity, which ensures the regularity of the mesh after advancement (see Fig. 6).

It is found [13] that EMT has enabled a much more even distribution of the meshes representing the

bubble surface even in the midst of a strong jet formation where there is great difference in the surface

velocity of the bubble. In doing so, the incorporation of EMT has permitted the use of significantly larger

time stepping and still within reasonable accuracy.
A Bi-CG iterative solver is implemented to solve the resulting linear system. Bi-CG iterative solver is a

member of conjugate gradient (CG) iterative solver family. CG solver is most efficient in solving symmetric

positive-definite linear systems, while unfortunately the present resulting system is not symmetric positive-

definite. Since Bi-CG solver is a little less efficient than CG solver but can solve any linear systems, it seems

a logical choice to implement the Bi-CG solver. It is found that the Bi-CG solver is far more efficient than

the direct solver based on Gaussian elimination and accelerates the simulation greatly. In addition, the Bi-

CG solver has another advantage over the direct solver in that it can easily control the solution error. In our

calculations, the convergence condition is set at 10�10. (The typical CPU time to simulate the evolution of
explosion bubble(s) range from much less than 1 h for a single Rayleigh bubble in one period to about 5 h

for the more complex two bubbles in the presence of the free surface running on a Pentium III 1.2 GHz PC

with 1 GB RAM; see below.)
4. Numerical results and discussions

One of the simplest bubble dynamics problems is the Rayleigh bubble. There exists a simple ordinary
differential equation (ODE) describing its behavior, which can be solved accurately by standard ODE

solver such as the fourth-order Runge–Kutta method. The Rayleigh bubble calculated here has initial

radius R0 ¼ 0:1651 and pressure e ¼ 100 and d ¼ 0. The initial spherical bubble surface is discretized into
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1280 triangular elements using a projection and refinement method starting from a regular icosaedron.

Since in this case the bubble is expanding and collapsing uniformly and so is the mesh distribution kept

uniform, no mesh optimization via EMT is applied. Fig. 7(a) shows the computed radius variation over two
expanding and collapsing cycles� evolution of Rayleigh bubble; this compares very well with the direct

solution of Rayleigh equation (depicted as solid line in the same figure). Fourth-order Runge–Kutta time

marching scheme is used in both the simulation and solution of the Rayleigh�s equation. Theoretically,

Rayleigh bubble will keep to the spherical shape characteristic throughout its whole lifetime, i.e. the radius

at all surface points should be identical. In order to evaluate the influence of numerical errors on the de-
t
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Fig. 7. (a) Radius variation and error accumulation of the Rayleigh bubble with e ¼ 100 and R0 ¼ 0:1651. (b) Energy balance of the

Rayleigh bubble with e ¼ 100 and R0 ¼ 0:1651.
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formation of the Rayleigh bubble, the maximum absolute deviation of the bubble surface from the spherical

Rayleigh�s bubble is also shown in Fig. 7(a). The error increases when the bubble is near the minimum size

point and is relatively flat otherwise. This may imply that the Rayleigh bubble is most unstable at its
minimum size. Generally, the error line indicates a mild increasing trend as the numerical errors are

constantly accumulating during the computations. The energy balance of the Rayleigh bubble is shown

next in Fig. 7(b). The non-dimensional kinetic energy of the bubble sphere is evaluated as

Ek ¼
1

2

Z
S
/
o/
on

ds; ð21aÞ

while the potential energy counterpart (which is a combination of the gravitational potential energy and the

internal potential energy) is given as

Ep ¼ V 1
�

� d2zc
�
þ eV
k� 1

V0
V

� �k

ð21bÞ

(see also [20]). Here zc is the depth of the bubble center. The total energy E ¼ Ek þ Ep is a constant due to

the law of energy conservation. In Fig. 7(b) the solid line with circular markers is the potential energy which

includes the bubble and fluid potentials, while the solid line with square markers denotes the kinetic energy.
The total energy comprising the sum of the potential and kinetic energy assumes an almost perfect constant

quantity over the whole evolution of the Rayleigh bubble even at the most unstable point of minimum

bubble size. (It may just be noted that when the DBEM of [18] is utilized to make an identical run, the

results obtained are fairly similar with the same level of accuracy compared to the analytical solution.)

In the next case the gravity effect is added into the Rayleigh bubble to study the evolution of an ex-

plosion bubble in the gravity field. All parameters are set equal to the Rayleigh bubble case (R0 ¼ 0:1651
and e ¼ 100) except the gravity is set as d2 ¼ 0:05. The initial spherical bubble is also discretized into 1280

triangular elements. The evolution of the bubble is shown in Fig. 8(a). Fig. 8a(1) indicates the initial bubble.
(The color contour represents the magnitude of the potential function.) During the expanding phase gravity

shows little influence on the bubble behavior. When the bubble reaches its maximum size, it is still kept

nearly spherical as depicted in Fig. 8a(2). In the consequent collapsing phase, the effect of gravity is felt. The

lower bubble boundary moves faster than the upper one which makes the bubble becomes a bean-like shape

at non-dimensional time of t ¼ 1:679 and the start of jet formation process (Fig. 8a(3)). In Fig. 8a(4) the jet

is fully developed and going to impact the upper boundary of the bubble. At the dimensionless time of

1.700 (Fig. 8a(5)), the jet has impacted on the opposite bubble surface and a toroidal bubble is formed via

the employment of a surgical-cut and a vortex ring. The purple bar inside the toroidal bubble is the vortex
ring placed to simulate the rotational part of the flow. Fig. 8a(6) shows the further evolution of the toroidal

bubble which is in the process of rebounding.

Next, to study the effects of increase of gravity on the bubble behavior, the gravity parameter d2 is

increased to 0.25 and the simulation is repeated with the same initial conditions. The results are shown in

Fig. 8(b). It is difficult to detect the influence of gravity on the bubble growth/expansion phase and the

bubble shape at its maximum size (Fig. 8b(2)) is almost identical to the one shown in Fig. 8a(2), except that

the vertical position of the bubble center for the latter is lower. In the ensuing collapsing phase, the in-

fluence of gravity is discernible. The larger gravity of d2 ¼ 0:25 accelerates the deformation of the bubble,
which brings the starting point of jet formation forward to as early as t ¼ 1:558 when the bubble is still

relatively large in dimension (compare Fig. 8a(3) and b(3)). What is interesting to note is that the total time

taken for the jet to be fully developed as indicated by the pending formulation of the toroidal shaped

bubble is not greatly affected by the increased gravity. The increased gravity only results in the larger

volume of the bubble in the final stage of collapse. Fig. 8b(5) at t ¼ 1:914 shows that the (bubble) jet is

closed to make impact on the top surface of the bubble which then lead to the formation of the toroidal
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shape. The toroidal bubble once formed continues to evolve and subsequently contract in volume to reach

its minimum size at time t ¼ 2:054 (Fig. 8b(6)). Rebounding follows subsequently. It can be suggested that

the gravity strength determines the bubble size at the jet impact. It may be noted that EMT was applied in
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both the simulations of Figs. 8(a) and (b) which serves to avoid the overcrowding of elements in the jet tip

vicinity. EMT works well throughout the phase of the toroidal bubble evolution. Had EMT not been

employed, there would have been necessary to employ nodes insertion to avoid exceedingly large size el-
ements and mesh refinements at other parts so that the shape of the bubble is still reasonably �smoothed�.
Fig. 8(c) compares the bubble (gravity) center rising trajectories in the different gravity field. It is as ex-

pected, the larger gravity case has a faster rise. For the bubble under smaller gravity effect, the rising speed
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keeps to relatively low magnitude during most part of the evolution cycle, but it increases fairly rapidly

towards the end of the collapsing phase. However, the change of rising speed is much less obvious for the

bubble under the larger gravity influence. The energy balance (and its components) is shown in Fig. 8(d) for

the respective d2. It can be observed that the total energy is maintained throughout, and the difference in d2

has resulted in different magnitude of the potential and kinetic energy.

In the next case the interaction between two symmetric explosion bubbles is studied. Buoyancy is set to

zero (d2 ¼ 0). All other parameters are set equal to the Rayleigh bubble case R0 ¼ 0:1651 and initial
pressure ðe ¼ 100Þ. The initial distance between the two bubbles is set to 1.5 dimensionless units. Each

initial bubble surface is triangular discretized into 1280 elements. Fig. 9a(1) shows the initial state at t ¼ 0.

There is a symmetric expansion of the two bubbles with the outer-side boundaries moving faster compared
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to the inner-side boundaries as constrained by the presence of the other bubble. With time, each bubble

evolves into a bun-shaped as shown in Fig. 9a(2). Upon reaching the maximum volume at t ¼ 0:870, the
collapsing phase begins. The outer-side boundaries of each bubble stop its movement outwards and begin

to move inwards while the inner-side boundaries continue to move outwards albeit at a much slower rate

towards the inner-boundaries of the other bubble. With the outer-side boundaries of the two bubbles
moving towards the symmetric plane, the jets at the outer-side boundaries start to develop which are shown

in Fig. 9a(3). Fig. 9a(4) shows almost the full development of the associated jets which are going to impact

the inner-side boundaries of the bubbles. Fig. 9(b) shows the energy balance of the evolution of one of the
two symmetric explosion
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two symmetric bubbles. In fact, the volume, potential energy, kinetic energy and total energy of each

bubble is almost identical to the other thereby further attesting to the accuracy of the assembled computer

code. The total energy (the solid line in the figure) is almost constant throughout the bubble evolution.

In the forth case, both the gravity and free surface effects are taken into account, which form a complete

three-dimension problem. Two bubbles with the same initial size and pressure (R0 ¼ 0:1651 and pressure

e ¼ 100) are separated by the horizontal distance of 2 dimensionless units, and located 1.5 dimensionless

units under the initially quiescent free surface. The gravity is in the vertical direction with strength

d2 ¼ 0:25. Each initial bubble is still discretized into 1280 triangular elements, while the free surface with a
non-dimensional size of 10� 5 units is discretized into 1152 elements. The source distribution outside the

surface mesh area is assumed to be null value. (Computations have been carried out with even larger extent

and more elements on the free surface and the results differ by much less than 1% (not shown).) Fig. 10(1)

shows the initial configuration. (On these figures, the color contour represents the magnitude of the po-

tential function, /.) At time t ¼ 0:122 the bubbles are in their expanding phase and there can be found a

small rise on the free surface (Fig. 10(2)). The maximum bubble size is reached when t ¼ 0:658 which is

displayed in Fig. 10(3). Some deformation of the bubble shape can be observed at this time. On the free

surface, a higher rise is achieved and obvious surface peaks attributing to the presence of the two bubbles
are observed. After reaching their maximum size, the two bubbles start to collapse and eventually leading to

jet formation. At time t ¼ 1:338, the oblique jets are formed, which are shown in Fig. 10(4). Corre-

spondingly, there are two jets on the free surface pointing upwards.

The fifth case studies the evolution of one explosion bubble near a rigid spherical ball (see Fig. 11(1)) in

the presence of the free surface. The explosion bubble is originally spherical with R0 ¼ 0:1651 and pressure

e ¼ 100 and d2 ¼ 0:25. The radius of the rigid ball is one dimensionless unit and is located to the right side

of the bubble at a distance of 2 dimensionless units. The initial free-surface is located 1.1 units above the

bubble center. The initial bubble and rigid ball are still discretized into 1280 triangular elements, respec-
tively, while the free surface is discretized into 1152 elements. At time 0.05666, the bubble is expanding

spherically but the pressure inside the bubble is much lower than the initial state. The free-surface shows a
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marginal rise (see Fig. 11(2)). The color contour in Fig. 11 represents the pressure distribution. One may

note the pressure distribution on the rigid ball due to the expanding gaseous bubble. The surface on the

rigid ball nearest the bubble exhibits the largest magnitude of pressure exerted. The bubble continues to
expand till its maximum size at time 0.8468 in Fig. 11(3). One can easily detect the asymmetrical shape of

the bubble with the surface facing the rigid ball exhibiting a flatter feature compared to the diametrically

opposite side of the bubble surface on the left. There is an obvious rise of the free surface due to the ex-

panding bubble. On closer scrutiny, for the free surface in the vicinity and nearest the top section of the

rigid ball, there is a slight depression of the surface compared to the initial quiescent state. One may note

that in the ‘‘rushing’’ in of the fluid from the surrounding due to the rise of the free surface next to the
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expanding bubble, the narrow extent between the rigid ball and the initially horizontal free surface induced

a high velocity region with accompanying low pressure; this ultimately caused the free surface subjected to

atmosphere pressure to move downward albeit marginally. As time progresses, the bubble starts to contract
and a jet pointing downwards is developed during the collapsing phase. At time 1.4491, the jet is quite

developed which is clearly observed in Fig. 11(4). The presence of the jet is manifested as higher pressure

exerted on the left side of the rigid ball nearest the bubble. Because of the jet, the rise of the free-surface

becomes even higher although the lateral extent has becomes smaller.
pZFig. 10. (continued )
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The presence of free surface, gravity effect and even the symmetric placement of bubble can give rise to

jet(s) formation during the bubble(s) evolution. It is interesting to note their characteristics and differences.

The free surface induced jet always points downwards, while the gravity induced jet always points upward
and is not as sharp as the jet due to another bubble. For the bubble induced jet, it is always pointing

towards the other bubble. Gravity effect also shows little influence during the expanding phase while the

symmetric placement of bubbles indicates stronger influence during this stage of the bubble development.

In the sixth and final case using the present IBEM approach, a comparison is made between the sim-

ulation and the experimental data from Boyce and Debono [7]. To be described very briefly, the experiment
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Fig. 11. Evolution of one bubble near a rigid ball under free surface (e ¼ 100 and d2 ¼ 0:25). Time (1) 0.000, (2) 0.0566597, (3)

0.846799 and (4) 1.44911.
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of an underwater explosion was carried out in an outdoor pond measuring about 18 m in diameter with an

average depth of 7 m. An explosive charge of 55 g of Hexocire was placed and located at 3.5 m beneath the

water surface at the center of the pond. A solid steel plate of thickness 0.2 m measuring 1.5� 1.5 m was

vertically placed 0.4 m away from the explosive charge (Fig. 12(a)). The charge detonation was syn-

chronised with the very high speed video camera capable of recording up to 1000 frames per second to track

the evolution of the bubble in the presence of the nearby steel plate. For the numerical simulation, the

initial bubble radius R0 and the initial bubble pressure P0 is estimated based on the weight W (in kg) and the
depth H (in meter) of the explosive by an empirical formula (see [15]) given as
Y0 1 2



Fig. 12. (a) Configuration of explosion bubble near a vertical wall. b(1) Explosion bubble near a wall (t ¼ 0:00 ms). b(2) Explosion

bubble near a wall (t ¼ 7:82 ms). b(3) Explosion bubble near a wall (t ¼ 50:00 ms). b(4) Explosion bubble near a wall (t ¼ 77:69 ms).

b(6) Explosion bubble near a wall (t ¼ 90:57 ms). b(7) Explosion bubble near a wall (t ¼ 93:34 ms). b(8) Explosion bubble near a wall

(t ¼ 97:50 ms).
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Rm ¼ 3:38
W

H þ 10

� �1=3

; ð22aÞ
R0

Rm

¼ 0:0327H 1=3; ð22bÞ
P0 ¼ 13; 9000
W
V

� �k

; ð22cÞ

where V ¼ ð4=3ÞpR3
0 is the initial bubble volume. Since the distances from the bubble to the free surface and

bottom are large compared to the standoff distance to the vertical wall, the influences from both the free

surface and bottom are ignored. The bubble is constructed by 1280 elements and the wall is made of 1152

elements. In the comparison, the bubble shape at the same (or nearest) time is used. Fig. 12b(1) shows the

initial mesh and bubble size on the left with the color contour indicating the magnitude of the potential

function. On the right side of the same figure, the image of the initial bubble from the experiment is shown.

At around 8 ms, the bubble is still expanding. The influence of the left wall makes it slightly oval in shape

(Fig. 12b(2)). At the time of 50 ms (Fig. 12b(3)), the bubble has about expanded to its maximum size. But
because of the presence of the wall, its left side is clearly flattened. The bubble shape matches rather well

with the image taken from the experiment. Fig. 12b(4) compares the bubble shape at the time of 78 ms.

After reaching its maximum size, the bubble is in the process of collapsing. At around 82 ms the bubble

collapses further which is depicted in Fig. 12b(5). Due to the effect of gravity, the bubble starts to lose its

vertical symmetry at the time of 91 ms (Fig. 12b(6)). In the numerical model, a water jet can be observed to

develop from the right side of the bubble surface. It is unfortunate that the experiment could not depict the

happenings within the bubble; the diametrical view is blocked by the front surface of the bubble. In

Fig. 12b(7) at 94 ms, the oblique water jet is just at about the quarter way mark towards making impact on
the opposite side of the bubble surface. On the corresponding experimental image on the right, although

one cannot see the development of the jet it is clear that the right side of the bubble surface has moved

towards the steel plate on the left. At around 97 ms as shown in Fig. 12b(8), the bubble is already in a

toroidal form (the purple bar inside the bubble is the vortex ring). The experimental image has depicted

further movement of the bubble surface on the right side towards the left. Overall, the corresponding

images from the experiment bear reasonable resemblance to the simulated results.
5. Conclusions

In this work, a 3D IBEM approach is presented to study underwater explosion bubble problems. The

dynamics of bubble(s) in six different arrangements have been simulated. For the simplest Rayleigh bubble
case strict comparison is made with the analytical solution of Rayleigh equation, and there is very good

agreement. The energy balance for the evolution of the Rayleigh bubble is found to be effectively constant

throughout the bubble evolution for at least two full cycles. In the buoyancy driven rising bubble case, the

trajectories of the bubble centers in different gravity field are obtained and compared. For the remaining

two cases of two initiating bubbles along a vertical line without gravity and along a horizontal line under a

free surface with the effect of gravity included, it is found that the total energy of the respective simulation

indicates an almost constant value throughout the evolution. Finally, the behavior of a bubble next to a

rigid spherical ball in the vicinity of the free surface and separately near a rigid vertical wall are calculated.
For the latter, the simulated results compared well to an underwater explosion experiment. All the above

suggests that the present approach using IBEM is reasonably accurate. No smoothing algorithm has been
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applied and yet the results obtained are reasonably smooth for all the cases considered, which suggests that

IBEM proposed is stable and robust.
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Appendix A. Integration formulae over triangular elements

The triangular element DABC is displayed in Fig. 13. The source is distributed on the triangular element.

The control point P is located at a distant of z above point A. The normal vector n of element DABC is

pointing outward from the paper plane.

The induced potential at control point P by an uniform source distribution over triangular element

DABC can be formulated asZ aþb

0

Z h secðh�bÞ

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p rdrdh ¼ h arctanh
h sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ z2 cos2 a
p

� �"
þ arctanh

h sin bffiffiffi
h
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: ðA:1Þ

The induced potential at control point P by a linear source distribution of which the highest source
density 1 is located at point A, B and C of the triangular element DABC can be formulated as Eqs. (A.2),

(A.3) and (A.4), respectively. These are
lb 

la 
a 

b 

h 

b

a
A x

Fig. 13. Triangular element.
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Z aþb
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On the other hand, the induced normal velocity at control point P by an uniform source distribution

over triangular element DABC can be formulated as
Z aþb
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The induced normal velocity at control point P by a linear source distribution of which the highest

source density 1 is located at point A, B and C of the triangular element DABC can then be formulated as

Eqs. (A.6), (A.7) and (A.8), respectively. These are
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Fig. 14. Sub-division of triangular elements.
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The induced potential at control point A by a linear source distribution on the border BC of which the

highest source density 1 is located at point BðAÞ can be formulated as Eqs. (A.9), (A.10). These areZ la

�lb
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If the perpendicular projection O of the control point on the triangular element DABC does not coincide
with the corners A, B or C, then the triangular element is divided into three smaller triangular elements

DOAB, DOBC and DOCA (see Fig. 14). For each sub-triangular element, the above formulae can be applied.
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